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Magnetization of concentrated polydisperse ferrofluids: Cluster expansion
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The equilibrium magnetization of concentrated ferrofluids described by a system ofpolydispersedipolar
hard spheres is calculated as a function of the internal magnetic field using the Born-Mayer or cluster expan-
sion technique. This paper extends the results of Huke and Lu¨cke @Phys. Rev. E62, 6875~2000!# obtained for
monodisperseferrofluids. The magnetization is given as a power series expansion in two parameters related to
the volume fraction and the coupling strength of the dipolar interaction, respectively.
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I. INTRODUCTION

Ferrofluids@1# are suspensions of ferromagnetic partic
of about 10 nm diameter in a carrier fluid. The particles
stabilized against aggregation by coating with polymers
by electrostatic repulsion of charges brought on their surfa
As long as the concentration of the particles is low, the eq
librium magnetization of a ferrofluid, is that of an ideal par
magnetic gas. In highly concentrated ferrofluids on the ot
hand, the magnetization is influenced by effects of partic
particle interactions.

We studied these effects for ferrofluids that are descri
by a system of identical dipolar hard spheres in Ref.@2#,
hereafter referred to as paper I. In that paper, we used
technique of the Born-Mayer or cluster expansion techni
to evaluate the equilibrium magnetization as a series exp
sion in terms of the volume fractionf5NpD3/6V and a
dipolar coupling parametere5m2/4pm0kT, with N/V being
the particle density, andD and m being the common hard
sphere diameter and magnetic moment of the particles
spectively.

However, real ferrofluids are polydisperse, i.e., the p
ticles vary in size and magnetic moment. This property ha
strong influence on the equilibrium magnetization, for co
centrated as well as for dilute fluids. The goal of this pape
to generalize the findings of paper I to include the effects
polydispersity.

The linear response problem of determining the static
tial susceptibilityx of a mixture of dipolar hard spheres wa
investigated already for the equivalent electric case in
framework of integral theories: The mean spherical mo
@3# was extended to binary or multicomponent mixtur
@4–9#. The reference hypernetted chain method@10# was also
applied to bidisperse systems@11,12#. Recently @13#, the
mean spherical model was used within the algebraic per
bation theory@14#, however, without leading to new resul
for the initial susceptibility. The mean spherical model w
also extended to polydisperse ferrofluids in arbitrary h
fields @15,16#. Another theory dealing with arbitrary fields i
the high temperature approximation@17#. A variant of this
theory was proposed in Ref.@18# and extended in Ref.@19#.

Our calculation follows closely that of paper I. There
the application of the cluster expansion technique to a mo
disperse system of dipolar hard spheres resulted in an ex
sion for the magnetizationM that can be put into the form
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fmenLm,n~a!, ~1.1!

whereM sat is the saturation magnetization of the fluid. Th
functionsLm,n(a) were given explicitly in terms of analytic
expressions in the dimensionless magnetic fielda. We cal-
culatedL2,2(a) and some of theL1,n(a). Lower orders van-
ish, except for the Langevin functionL0,0(a).

In the polydisperse case discussed here, the parametef,
e, anda are replaced by more generally defined quantit
f̄, ē, andā ~cf. Sec. III!. The calculatedLm,n transform into
onefold, twofold, or threefold sums over all particles, whe
the individual addends are analytical functions of the m
netic moments, diameters of the involved particles, and
the reduced magnetic fieldā.

The paper is organized as follows. In Sec. II, we expla
the principles of the cluster expansion technique. The m
part of the paper is Sec. III, where we generalize the res
of paper I for the equilibrium magnetization in the monod
perse case to polydisperse ferrofluids. The findings are
cussed in Sec. IV using sample distributions. In Sec. V,
results are compared to the experimental data. We conc
in Sec. VI.

II. CLUSTER EXPANSION: APPLICATION TO THE
SYSTEM OF DIPOLAR HARD SPHERES

Here, we recapitulate briefly the principle of the Bor
Mayer or cluster expansion technique: Consider a system
particles i 51, . . . ,N interacting with an external potentia
Vi and with each other via a potentialVi j . To calculate ther-
modynamic properties of the system one has to find the
nonical partition function

Z5E expF2(
k

vk2(
i , j

v i j GdG. ~2.1!

Here, v i5Vi /kT, v i j 5Vi j /kT, and dG means integration
over the configuration space. The kinetic energy of the p
ticles, if important, can be thought to be included in t
termsVi . One now writes

Z5E )
k

e2vk)
i , j

~11 f i j !dG, ~2.2!
©2003 The American Physical Society03-1
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where

f i j 5e2v i j 21. ~2.3!

If the typical interaction energy is small compared tokT, the
f i j can be considered as small parameters for the expan
of the integrand in Eq.~2.2!. The leading terms factorize int
low-dimensional integrals that can be calculated at least
merically.

In the system of dipolar hard spheres~monodisperse or
polydisperse!, the interaction potentialVi j consists of a
dipole-dipole~DD! interaction and a hard core~HC! repul-
sion part,Vi j 5Vi j

DD1Vi j
HC , where the first part is given by

Vi j
DD52

3~mi• r̂ i j !~mj• r̂ i j !2mi•mj

4pm0r i j
3

~2.4!

for two particles with magnetic momentsmi and mj at a
distancer i j 5xi2xj , with r i j 5ur i j u andr̂ i j 5r i j /r i j . For par-
ticles with diametersDi and D j , one hasVi j

HC(r i j )5` if
r i j ,Di j 5(Di1D j )/2, andVi j

HC(r i j )50 otherwise.
Taking the thermodynamic limit in a system of dipol

particles requires some care because of the long range
acter of the forces@21#. We circumvented this problem b
decomposing the dipolar potentials into a short range an
long range part, and replacing the latter by an effective m
field. Within this approach, a particle experiences the lo
magnetic field

H local5Hs1Hdipole,near5H1
M

3
1Hdipole,near .

~2.5!

It consists of the dipolar near fieldHdipole,near that is pro-
duced by the other particles within a sphere of radiusRs and
of an effective ‘‘external’’ field

Hs5H1
M

3
, ~2.6!

seen by the particle in question at the center of the sph
Here,H is the macroscopic internal magnetic field andM the
sought after equilibrium magnetization. Thus, when evalu
ing the partition function one has to take

Vi52mi•Hs ~2.7!

as the external potential. The radiusRs of the sphere has to
be taken to be sufficiently large to allow the far-field dipo
contributions to be replaced by those of a continuum—
paper I for details. Neither the kinetic energy of the magne
particles, nor the carrier fluid has to be taken into accoun
the partition function, since these terms do not contribute
the equilibrium magnetization. The configuration space
thus given by the positionsxi of all particles and the orien
tationsV i of their magnetic moments:dG5dnxid

nV i .
In paper I, we used in addition also an expansion in

dipolar interaction: Thef terms were expanded as
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f i j 5e2v i j
HC

e2v i j
DD

215 f i j
(0)1 f i j

(1)1 f i j
(2)1•••, ~2.8!

with

f i j
(0)5e2v i j

HC
21, ~2.9!

f i j
(n)5

~2v i j
DD!n

n!
e2v i j

HC
, n>1. ~2.10!

The two expansions concerning thef terms andv i j
DD together

translate in the monodisperse case into a double power
pansion ofZ in the the volume fractionf of the particles and
the dipolar coupling constante. We calculated the terms in
O(fen) and inO(f2e2) of Z and from that the equilibrium
magnetization in the same order.

III. CALCULATING THE EQUILIBRIUM
MAGNETIZATION

A. Notation

Consider a system ofN spherical hard particles with di
ametersD1 , . . . ,DN carrying permanent magnetic momen
m1 , . . . ,mN contained in a volumeV and subjected to a
magnetic fieldH. Let D̄ andm̄ be some ‘‘typical’’ values for
diameters and magnetic moments that are discussed fu
below. We then define the parameterf̄ related to the volume
fraction of the hard spheres and the dipolar coupling para
eter ē as

f̄5
NpD̄3

6V
, ē5

m̄2

4pm0kTD̄3
. ~3.1!

The equilibrium magnetization is calculated as a power
pansion in these two parameters. The dimensionless m
netic fields are defined as

ā5
m̄H

kT
, ās5

m̄Hs

kT
. ~3.2!

Diameters and magnetic moments will be expressed in u
of the typical values via

D i5
Di

D̄
, m i5

mi

m̄
. ~3.3!

We will also use the minimal possible distance between t
hard spheresi and j given by

D i j 5
1

2
~D i1D j !5

Di j

D̄
. ~3.4!

Furthermore, we introduce the reduced magnetic fields
each particlei by

a i5
miH

kT
5m i ā, asi5

miHs

kT
5m i ās . ~3.5!
3-2
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Our cluster expansion does not depend on how the c
acteristic values ofD̄ and m̄ are defined in detail. For ex
ample, they could be taken as some weighted mean of thDi
andmi , respectively, or their most probable values. To p
serve this freedom of choice in our expansion offers so
advantages for the comparison with magnetogranulome
analyses where the distribution of the diameters and m
netic moments is not knowna priori but on the contrary the
goal of the calculations.

Note, however, thatf̄ coincides with the actual volum
fraction f of the hard spheres only if one definesD̄ via the
mean volume of the particles

D̄35
1

N (
i

Di
35E D3P~D !dD[^D3&P . ~3.6!

Here, P(D) is the normalized distribution function of th
hard sphere diameters.

Similarly m̄ is related to the saturation magnetizationM sat

of the ferrofluid viaM sat5Nm̄/m0V only if m̄ is defined by

m̄5
1

N (
i

mi5E m~D !P~D !dD. ~3.7!

The second equality of Eq.~3.7! holds when the magnetiza
tion of each particle is given by a function of its volume. W
assume that this is the case and thus describe in this p
polydispersity effects of the ferrofluid by a distribution fun
tion P(D) depending only on the hard sphere diameterD.
The generalization to a distribution functionP(D,m) of in-
dependently varying diameters and moments is straight
ward. Averages weighted with the distribution functionP(D)
of the diameters will mostly appear in the reduced version
integrals over the reduced diameterD5D/D̄ with the appro-
priate weight functionP(D).

The thermodynamic mean with respect to the noninter
ing system will be denoted bŷ•••&0 and the corresponding
canonical partition function byZ0. With this notation inte-
grals over thef terms appearing inZ ~2.2! can be written in
the form

E )
k

e2vkf •••dG5Z0^ f •••&0 . ~3.8!

But in contrast to paper I, we derive here an approximat
directly for the free energyF52kT ln Z. If the particle-
particle interaction would depend only on the interparti
distance thenF would be given by

F5F02kTS 1

2 ( 8 ^ f i j &01
1

6 ( 8 ^ f i j f jk f ki&0D ,

~3.9!

including orders up toO(f̄2), or, more generally speaking
up to terms of second order in the number density. T
primed sums are taken over all particle pairsi , j , respec-
tively all triples i , j , k. While Eq. ~3.9! does not hold for a
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system of dipolar particles in a magnetic field in arbitra
order of ē, it still is correct in the orders we want to calcu
late.

The polydisperse generalization affects the calculation
the integrals in Eq.~3.9! in the following two ways.

~i! The fact that the individual dimensionless magne
fieldsa i are different leads to more complicated expressio
for some resulting functions compared to the monodispe
case—see the definitions ofGn

P andKP below.
~ii ! The dispersion in the hard sphere diameters requ

more difficult geometrical considerations concerning thev i j
HC

terms, especially in the three-particle integral.

B. The leading term: Polydisperse Weiss model

The leading term inZ is the partition function of the~for-
mally! noninteracting paramagnetic gas in the magnetic fi
Hs,

Z05E )
k

e2vkdG5)
k

zk , ~3.10!

zk5E e2vkdxkdVk54pV
sinhask

ask
. ~3.11!

The equilibrium magnetizationM (ās) obtained from

M ~ ās!52
1

m0V

]F

]Hs
5

1

m0V

]~kT ln Z!

]Hs
5

m̄

m0V

] ln Z

]ās
~3.12!

reads in leading order

M ~ ās!5
Nm̄

m0V
Lpoly~ ās!. ~3.13!

Here,

Lpoly~ ās!5
1

N (
i

m iL~m i ās!

5E m~D!L@m~D!ās#P~D!dD ~3.14!

is given by the sum of the Langevin paramagnetic contri
tions coming from each~reduced! magnetic momentm i

5mi /m̄ with L being the Langevin function. The secon
equality in Eq.~3.14! is the continuous analog of the su
with m(D)5m(D)/m̄ and D5D/D̄. If one definesm̄ via
Nm̄5( imi , so that Nm̄/m0V5M sat then Lpoly(ās→`)
51.

The result~3.13! reduces to the well-known expressio
for the magnetization of a polydisperse ideal paramagn
gas as a superposition of Langevin functions, if one repla
ās by ā ~see, e.g., Ref.@16#!. However, the dipolar far-field
contributions enter via Eq.~2.6! as a mean field into

ās5ā1m̄M /3kT. ~3.15!
3-3
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Thus, the lowest-order result~3.13! for M (ā) ,

M5
Nm̄

m0V
LpolyS ā1

m̄M

3kT
D , ~3.16!

already contains corrections from the particle-particle int
action in the mean field approximation and Eq.~3.16! is the
polydisperse generalization of the Weiss model@20#.

By replacingM on the right hand side of Eq.~3.16! by the
expression for the ideal paramagnetic gas, one arrives a
equation proposed in Ref.@18#.

C. The magnetization inO„f̄…

To calculate the canonical partition function in linear o
der of f̄, we follow the lines of paper I, Sec. IV. One nee
to include only the linearf terms in the expansion~3.9!.
Thus, we write

F5F02kT
1

2 ( 8 ^ f i j &0 . ~3.17!

For the second term in Eq.~3.17!, the trivial integrations
over the degrees of freedom of all particles excepti andj are
performed first. This gives

1

2 ( 8 ^ f i j &05
1

2Z0
( 8 E )

k
e2vkf i j dG

5( 8
1

2zizj
E e2v i2v j f i j dxidxjdV idV j .

~3.18!

Now we expandf i j . Let

An,i j 5E e2v i2v j f i j
(n)dxidxjdV idV j , ~3.19!

such that

F5F02( 8
kT

2zizj
(
n50

`

An,i j . ~3.20!

We need not calculateA0, since this term does not con
tribute to the equilibrium magnetization. Furthermore,A1
50, because a dipolar magnetic field vanishes when a
aged over a spherical surface. This is explained in more
tail in paper I. Using the definition~2.10! of f i j

(n) , and the
dipolar potential~2.4!, we can write

An5
V

n! E easicosq i1as jcosq j

3S m̄2m im j

4pm0kTri j
3 D n

Pn~w i ,q i ,w j ,q j ,w,q!

3e2v12
HC

r i j
2 dri j dv i j dV idV j . ~3.21!
05140
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Here, we have integrated overxi and decomposedr i j into the
distancer i j and a spherical anglev i j . The angles (w i ,q i),
(w j ,q j ), and (w,q) represent the spherical anglesV i , V j ,
andv i j , respectively. The function

P~w i ,q i ,w j ,q j ,w,q!53~m̂i• r̂ i j !~m̂j• r̂ i j !2m̂i•m̂j
~3.22!

comes from the dipolar interaction. The integration over
directions ofr i j , mi , andmj can still be done analytically
But in contrast to the monodisperse calculation, the resu
now a function of two parametersasi andas j . We define

Gn
P~asi ,as j!5

V2

n! ~n21!pzizj
3E easicosq i1as jcosq j

3Pn~w i ,q j ,w i ,q j ,w,q!dV idV jdv i j .

~3.23!

Gn
P(asi ,as j) is symmetric in its two arguments and a pol

disperse counterpart to the functionGn(as) defined in paper
I. It is Gn

P(as ,as)5Gn(as). Some of theGn
P are given in

the Appendix.
Inserting Eq.~3.23! into Eq. ~3.21!, integrating overr i j

between the minimal distanceDi j and`, and introducingf̄
and ē yields

An5
2

N
zizj f̄ēn~m im j !

nD i j
323nGn

P~asi ,as j!, ~3.24!

and together with Eq.~3.20! the free energy

F5F01•••2
kT

N (
n52

`

f̄ēn( 8 ~m im j !
nD i j

323nGn
P~asi ,as j!.

~3.25!

Here the dots represent the contribution fromA0 that was not
calculated. It can easily be shown thatF does not depend on
a particular definition ofm̄ or D̄.

Now, the equilibrium magnetizationM (ās) is given in
O(f̄) by

M ~ ās!5
Nm̄

m0V FLpoly~ ās!1 (
n52

`

f̄ēnGpoly,n8 ~ ās!G .

~3.26!

The functionGpoly,n8 is the derivative of

Gpoly,n~ ās!5
1

N2 ( 8 ~m im j !
nD i j

323nGn
P~asi ,as j!

5E @m~D i !m~D j !#
nD i j

323n

3Gn
P~asi ,as j!P~D i !P~D j !dD idD j ,

~3.27!
3-4
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which is a generalization ofGn @2# and reduces to the latte
in the monodisperse caseDi5D̄5D andmi5m̄5m.

In a last step, we convert the expression forM as a func-
tion of ās into a function ofā using the definition ofHs in
Eq. ~2.6!. By expanding and iterating in a way that is ana
gous to the procedure in paper I, Sec. IV C, we obtain
final result forM up to the order off̄:

M ~ ā !5
Nm̄

m0V FLpoly~ ā !18f̄ēLpoly~ ā !L poly8 ~ ā !

1 (
n52

`

f̄ēnGpoly,n8 ~ ā !G . ~3.28!

The two leading terms can be seen as the polydisperse
tension of the high temperature approximation derived
Ref. @17# for monodisperse systems.

D. The contribution in O„f̄2ē2
…

For the monodisperse system, the magnetization contr
tion in O(f̄2ē2) was calculated in Sec. V and Appendix B
paper I. The cluster integrals needed in that order are sh
in Fig. 3 of paper I. Some of them vanish for the same rea
as the contributionA1 in O(f̄ē); they involve the averaging
of a dipolar field over a spherical surface. Most of the
maining integrals cancel when the free energyF5

2kT ln Z is calculated. Up toO( ē2), we can write the re-
maining term in Eq.~3.9! as

^ f i j f ik f jk&05^ f i j
(0)f ik

(0)f jk
(0)&013^ f i j

(2)f ik
(0)f jk

(0)&0

13^ f i j
(1)f ik

(1)f jk
(0)&0 . ~3.29!

These three terms correspond to the graphsE, G, andH in
paper I. The first one is anO(f̄2ē0) term that does not con
tribute to the magnetization.

1. Graph G

Here, we give an outline of the polydisperse generali
tion of the calculation pertaining to graphG ~Appendix B.7
of paper I!. The quantityZG calculated in paper I is given b
the sum

ZG5Z0

1

2 ( 8 ^ f i j
(2)f jk

(0)f ki
(0)&0 ~3.30!

over distinct particlesi , j ,k. For calculating^ f i j
(2)f jk

(0)f ki
(0)&0

one starts with the trivial integrations: the degrees of fr
dom of all particles excepti, j, and k, the position of the
center of mass of the three remaining particles, and the
entation ofmk , since particlek is not involved in dipolar
interactions in this cluster. Then, for a fixed distancer i j the
integrations overv i j , V i , andV j , defined as in Sec. III C
are carried out. This introduces the functionG2

P into the re-
sult
05140
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^ f i j
(2)f ik

(0)f jk
(0)&05

36

pN2
~m im j !

2f̄2ē2G2
P~asi ,as j!

3E r i j
24e2v i j

HC
f ik

(0)f jk
(0)dri j dr ik .

~3.31!

The integral overr ik can be described by the following geo
metrical considerations: The volume of possible positions
particlek has to be found such that this particle overlaps w
both particlesi ~i.e., r ik,Dik) and j (r jk,D jk). Otherwise
the integral would vanish because of the factorf ik

(0)f jk
(0) . This

is only possible, ifr i j ,Dik1D jk .
In a final step the integration overr i j betweenDi j and

Dik1D jk is carried out. The final result is

^ f i j
(2)f ik

(0)f jk
(0)&05

3

N2
~m im j !

2f̄2ē2Gn
P~asi ,as j!

3 f G~D i j ,D ik ,D jk!. ~3.32!

The functionf G(D i j ,D ik ,D jk) is given in the Appendix. The
contribution to the free energy is according to Eqs.~3.9! and
~3.29! given by

2kT
1

6 ( 8 3^ f i j
(2)f jk

(0)f ki
(0)&0

52NkTf̄2ē2
116 ln 2

4
G̃poly,2~ ās!. ~3.33!

The function

G̃poly,2~ ās!5
6

116 ln 2
3

1

N3 ( 8 ~m im j !
2Gn

P~asi ,as j!

3 f G~D i j ,D ik ,D jk!, ~3.34!

was defined in such a way that it reduces toG2(as) in the
monodisperse case. Finally, introducing the diameter dis
bution functionP(D) requires the replacement

1

N3 ( 8 →E P~D i !dD i P~D j !dD j P~Dk!dDk ~3.35!

in Eqs.~3.33! and ~3.34!.

2. Graph H

The integrations to calculatêf i j
(1)f jk

(1)f ki
(0)&0 are performed

as follows~compare to Appendix B.8 in paper I!. After doing
the trivial integrations~concerning the possible configura
tions of the particles excepti, j, andk, and the center of mas
of the cluster!, the possible orientations of the cluster a
integrated out. Then, the integrations over the orientation
mi , mj , andmk are performed. One arrives at
3-5
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^ f i j
(1)f ik

(1)f jk
(0)&05m i

2m jmkē
2

4p2

15V2
KP~asi ,as j ,ask!

3E D̄6

r i j r ik
~3 cos2q jk21!e2v i j

HC
e2v ik

HC
f jk

(0)

3dri j dr iksinq jkdq jk . ~3.36!

This is, up to a factor ofN2Z0/2, a polydisperse generaliza
tion of Eq.~B21! of paper I. The remaining integrations co
cern the distancesr i j andr ik , and the angleq jk betweenr i j
and r ik . The functionKP is defined by

KP~asi ,as j ,ask!5
3

8

~4pV!3

zizjzk

3E
21

1 E
21

1 E
21

1

e(asiui1as juj 1askuk)

3~31ui
2!ujukduidujduk ~3.37!

@compare to Eq.~B22! of paper I#. An expression for the
monodisperse counterpartK(as) was given in Appendix A of
paper I. Here, we expressKP via Langevin functions,

KP~asi ,as j ,ask!53L~as j!L~ask!@31L 8~asi!1L~asi!
2#.

~3.38!

Note that r i j .Di j and r ik.Dik is required, otherwise the
integral~3.36! vanishes. The requirement that particlesj and
k have to overlap imposes the additional restrictionsur i j
2r iku,D jk and

q jk,q jk
max5arccos

r i j
2 1r ik

2 2D jk
2

2r i j r ik
. ~3.39!

After performing the remaining integrations within the
limits, the result is

^ f i j
(1)f ik

(1)f jk
(0)&05m i

2m jmkf̄
2ē2

48

5N2

3KP~asi ,as j ,ask! f K~D i j ,D ik ,D jk!.

~3.40!

The functionf K(D i j ,D ik ,D jk) is given in the Appendix. The
contribution to the free energy is

2kT
1

6 ( 8 3^ f i j
(1)f jk

(1)f ki
(0)&05NkTf̄2ē2Kpoly~ ās!,

~3.41!

with

Kpoly~ ās!52
24

5

1

N3 ( 8 m i
2m jmk

3KP~asi ,as j ,ask! f K~D i j ,D ik ,D jk!.

~3.42!
05140
3. The magnetization contribution

Inserting Eqs.~3.33! and~3.41! in Eq. ~3.9! and calculat-
ing the equilibrium magnetization results in an addition
O(f̄2ē2) term in Eq.~3.26!:

Nm̄

m0V
f̄2ē2F116 ln 2

4
G̃poly,28 ~ ās!2Kpoly8 ~ ās!G . ~3.43!

The expansion and iteration procedure to switch fromās to
ā is identical to the monodisperse case in paper I. The
expression for the magnetization containing all calcula
terms reads

M5
Nm̄

m0V FLpoly~ ā !18f̄ēLpoly~ ā !Lpoly8 ~ ā !

1 (
n52

`

f̄ēnGpoly,n8 ~ ā !164f̄2ē2Lpoly~ ā !Lpoly8 ~ ā !2

132f̄2ē2Lpoly~ ā !2L poly9 ~ ā !1f̄2ē2
116 ln2

4
G̃poly,28 ~ ā !

2f̄2ē2Kpoly8 ~ ā !G . ~3.44!

IV. SELECTED RESULTS FOR THE MAGNETIZATION

The Figs. 1 and 2 showing separate contributions
M (ā) in polydisperse systems were obtained by using l
normal distributions

P~D !5
1

A2psD0

e2s2/2e2 ln2(D/D0)/(2s2), ~4.1!

for the particle diameters as a representative and often u
example for size distibutions of model polydisperse syste
Using similar distributions, e.g.,G distributions, however,
would not qualitatively modify the results. In Sec. V, we u
also an experimentally determined size distribution. He
the quantityD̄ was taken to be defined via the mean volum
~3.6!, i.e., D̄35^D3&P5D0

3e15s2/2, so thatf̄ is the volume
fraction f. The magnetic moments of the particles we
taken to scale with their volumes,m;D3, allowing to set
m(D)5D3 such thatm̄5^m&P .

Figures 1 and 2 show the contributions

L1,1~ ā !58Lpoly~ ā !Lpoly8 ~ ā !, ~4.2a!

L2,2~ ā !564Lpoly~ ā !Lpoly8 ~ ā !2132Lpoly~ ā !2L poly9 ~ ā !

1
116 ln 2

4
G̃poly,28 ~ ā !2Kpoly8 ~ ā !, ~4.2b!

L1,2~ ā !5Gpoly,28 ~ ā !, ~4.2c!

L1,3~ ā !5Gpoly,38 ~ ā ! ~4.2d!
3-6
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to M (ā) ~3.44! for different values of the widths of the
distribution ~4.1!. The contributions of higher-order term
increase with growings. This is so because they depend
higher moments of the distributionP(D) that grow with the
width of the distribution, even if the third moment^D3&P is
kept fixed. The shift of the maxima of the curves to the rig
has a similar reason: Bigger particles, that react to sma
fields become more and more important when the width
the distribution grows.

The assumptionm(D)5D3 that the magnetic moments i
our ferrofluid model scale;D3 with the total volume of its
hard sphere constituents is somewhat too simple for parti
in real ferrofluids for two reasons. First, in the common ca
of steric stabilization by polymers, surfactants providing t
repulsion the surfactant layer of about 1–3 nm do not c
tribute to the magnetic moment. Second, an outer layer of
magnetic material might be magnetically dead so that it d
not contribute to the magnetic moment either. For magne
particles a dead layer depth of'0.8 nm has been reporte
@22#. To account for the sum of these two effects, we ha
introduced in our calculation forM an effective magnetic
diameterDmag via the relationD5Dmag15.6 nm. It ascribes
to every particle that has a magnetically effective core
diameterDmag, a hard sphere with a magnetically inert lay
of depth 2.8 nm. The magnetic moment of each particle w
then taken to scale with is magnetically effective volum
i.e., m5(Dmag/D̄)3.

The full line in Fig. 3 shows the reduced equilibriu
magnetization of an interacting polydisperse ferrofluid a

FIG. 1. The contributionsL1,1 and L2,2 as functions ofā for
lognormal distributions with different widthss. Here, ^D3&P51
andm(D)5D3.
05140
t
er
f

es
e
e
-
e
s

te

e

f

s
,

a

function of ā. Here, each particle has a total magnetic ina
tive layer of 2.8 nm and the diametersDmag of the magnetic
cores are log-normally distributed withs50.25 and
^Dmag

3 &P
1/3510 nm. The latter is taken as the reference dia

eter D̄ in the calculation. The particle density is chosen
such a way thatf̄50.05. Note that heref̄5fmag, the vol-
ume fraction of the magnetically active material. The ma

FIG. 2. The contributionsL1,2 and L1,3 as a function ofā for
lognormal distributions with different widthss. D andm(D) as in
Fig. 1.

FIG. 3. Equilibrium magnetization of a polydisperse ferroflu

@^Dmag
3 &P

1/3510 nm, s50.25,m5(Dmag/D̄)3# and a comparable
monodisperse ferrofluid, both with and without taking into accou
the particle interaction. See text for further details.
3-7
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netic momentm̄ for Dmag510 nm is chosen such thatē
52. The magnetization of the core is then about 550 kA
at room temperature, which is a little bit larger than that
magnetite.

Expansion terms of the order off̄ēn are taken into ac-
count up to ordern55 for the magnetization curves in Fig
3. Higher O(f̄ēn) terms have only a small effect on th
magnetization. Here,ē is by definition ofm̄ andD̄ a typical
interaction energy divided bykT for particles at a distance o
D̄510 nm. But with the two additional dead layers of tot
size 5.6 nm in between the particles of our model ferrofl
the real typical dipolar energies at contact are smaller.

The magnetization is compared to that of a polydispe
fluid without particle-particle interaction~long dashed line!,
and to a monodisperse ferrofluid, both with and without ta
ing into account the particle-particle interaction~short
dashed and dotted line, respectively!. The monodisperse sys
tem consists of particles withDmag510 nm with the same
nonmagnetic layer thickness, bulk magnetization, andfmag
as before.

One sees that taking into account polydispersity or p
ticle interaction alone strengthens the magnetization and
pecially the initial susceptibility. Both effects are comparab
for the given parameters. Together, they result in an e
higher equilibrium magnetization.

Figure 4 shows magnetization curves for magnetite-ba
ferrofluids with a bulk magnetization of 480 kA/m for distr
butions of different widths.Dmag is taken to be lognormally
distributed with^Dmag

3 &P5(8 nm)3 ands50.2, 0.3, and 0.4.
The volume fraction of the magnetic material isfmag50.1.
The particles are again assumed to carry a nonmagnetic
of 2.8 nm thickness.

The increase ins causes an increase of the initial susce
tibility already in the noninteracting case~long dashed lines!.
Including theO(f̄ē) terms~short dashed lines! has a posi-
tive effect on the magnetization. The relative increase
maximal for smallā. The magnetization decreases again
higher ā, if higher-order terms are taken into account~solid
lines!. For the considered ferrofluids theO(f̄2ē2) term that
is negative for higherā ~see Fig. 1! is almost solely respon
sible for this decrease. The positive contributions from
higherO(f̄ēn) terms (n>2) are again negligible, except fo
s50.4 and smallā, where they cause a further increase
the initial susceptibility. For smallā the O(f̄2ē2) term also
has a positive effect, but this effect is too small to be visib
The plots show again that the influence of higher-order te
is larger for broad distributions.

V. COMPARISON TO EXPERIMENTS

We compared our theorerical predictions for the magn
zation curves with experimental results of two differe
magnetite-based ferrofluids. Odenbach~ZARM, Bremen!
provided data on the equilibrium magnetization of the fer
fluid EMC 905 produced by FerroTec. We fitted our theor
ical result~3.44! taking into account the terms inO(fen) up
05140
f

l
d

e

-

r-
s-

n

d

er

-

is
t

e

f

.
s

i-
t

-
-

to n55 to the data assuming log-normally distributedDmag

and a nonmagnetic layer of depth 2.8 nm. The bulk mag
tization of magnetite was taken to be 480 kA/m. The resul
shown in Fig. 5. According to the fit, the saturation magn
tization of the ferrofluid isM sat537.4 kA/m. The parameter
defining the distribution turn out to beD058.3 nm ands
50.28. There are small differences between the data and
fit curve that are, in our opinion, due to deviations of the r
diameter distribution curve from the idealized log-norm
form.

Embs@23# measured the equilibrium magnetization cur
of the ferrofluid APG 933 of FerroTec. In addition, he dete
mined the diameter distribution of the particles by transm
sion electron microscopy~TEM! that was then used in ou
theoretical analysis. Diameters found in TEM measureme
are those of the magnetite particles. We assumed the m
netically effective diametersDmag to be 230.8 nm51.6 nm
smaller and to be zero for particles smaller than 1.6 nm. T
hard core diametersD were taken to be 232 nm54 nm
larger than the diameters obtained from the TEM measu
ments. As above, we took into account terms up toO(fe5)
and set the bulk magnetization of magnetite to 480 kA/
Figure 6 shows the TEM data and the experimental mag

FIG. 4. Equilibrium magnetization as a function ofā for log-
normal distributions witĥ Dmag

3 &P
1/358 nm and different widthss.

Long dashed: without particle interaction; dashed: particle inter

tion only in O(f̄ē); solid lines: all calculated terms.
3-8
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FIG. 5. Equilibrium magnetization of the ferrofluid EMC 905
Dots: experimental; solid line: the theoretical magnetization cu
assuming lognormally distributedDmag, cf. text.

FIG. 6. Top: equilibrium magnetization of the ferrofluid AP
933. Dots: experiment; solid line: the theoretical magnetizat
curve. Bottom: diameter distribution according to TEM measu
ments.
05140
tization curve together with the results of our theory. Bo
agree very well.

VI. CONCLUSION

In this paper, we used the technique of cluster expans
to derive an approximation to the equilibrium magnetizati
for the system of dipolar hard spheres in a magnetic fi
with diameter and/or magnetic moment dispersion as
model system for a polydisperse ferrofluid. The calculat
results in an expression for the magnetizationM in form of a
twofold series expansion in the parametersf̄, closely related
to the volume fractionf, andē, a coupling parameter mea
suring the strength of the dipolar interaction:

M5
Nm̄

m0V (
m50

`

(
n50

`

f̄mēnLm,n~ ā !. ~6.1!

f̄, ē, and the dimensionless magnetic fieldā are defined for
some typical valuesD̄ and m̄ for the hard sphere diameter
and magnetic moments, respectively.m̄ can be chosen in
such a way that the prefactorNm̄/m0V reduces to the satu
ration magnetization of the system. We gave expressions
L1,n (n<5) andL2,2. Lower-orders vanish, except forL0,0
reducing to the Langevin function in the monodisperse ca
The calculatedLm,n can be written as multiple sums over a
particles whose addends are analytical expressions.

The influence of particle-particle interaction grows wi
increasing width of the considered diameter distributio
Taking into account only theL1,1 term results in an increas
of the magnetization relative to the non interacting syste
whereas theL2,2 term leads again to somewhat smaller v
ues at higherā. Only at very smallā is its contribution
positive. The L1,n terms have little effect for realistic
magnetite-based ferrofluids, except for broad distributio
where they increase the initial magnetization.
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APPENDIX: THE FUNCTIONS Gn
P , f G, f K

The functionsGn
P(x1 ,x2) are symmetric in their argu

ments and have the form

Gn
P~x1 ,x2!5Gn

P(0)~1/x1 ,1/x2!1coth~x1!Gn
P(1)~1/x1 ,1/x2!

1coth~x2!Gn
P(1)~1/x2 ,1/x1!

1coth~x1!coth~x2!Gn
P(2)~1/x1 ,1/x2!. ~A1!

The Gn
P( i ) are polynomials and read forn<5

e

n
-
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It is

f G~D i j ,D ik ,D jk!5 lnS D ik1D jk

D i j
D2

3~D ik
2 2D jk

2 !2

4D i j
4

1
8~D ik

3 1D jk
3 !

3D i j
3

2
3~D ik

2 1D jk
2 !

D i j
2

1
13D ik

2 114D ikD jk113D jk
2

12~D ik1D jk!2
, ~A6!

and

f K~D i j ,D ik ,D jk!52
2

9
2

5

36

D i j
6 1D ik

6 1D jk
6

D i j
3 D ik

3
2

D jk
2

4D i j D ik

2
2D jk

3

9D i j
3

2
2D jk

3

9D ik
3

1
~D i j

4 1D ik
4 1D jk

4 !~D i j
2 1D ik

2 1D jk
2 !

8D i j
3 D ik

3
.

~A7!

When all diameters are equal, these functions reduce to

f G~D,D,D!5
1

6
1 ln 2, ~A8!

f K~D,D,D!52
5

24
. ~A9!
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