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Magnetization of concentrated polydisperse ferrofluids: Cluster expansion
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The equilibrium magnetization of concentrated ferrofluids described by a systgrolyafispersedipolar
hard spheres is calculated as a function of the internal magnetic field using the Born-Mayer or cluster expan-
sion technique. This paper extends the results of Huke and[Phys. Rev. B62, 6875(2000] obtained for
monodisperséerrofluids. The magnetization is given as a power series expansion in two parameters related to
the volume fraction and the coupling strength of the dipolar interaction, respectively.
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I. INTRODUCTION o 0
M=Mg> > #"e"Lmn(a), (1.0
m=0 n=0

Ferrofluids[1] are suspensions of ferromagnetic particles
of about 10 nm diameter in a carrier fluid. The particles arg here M

stabilized against aggregation by coating with polymers Ok ncionsL () were given explicitly in terms of analytic
by electrostatic repulsion of charges brought on their Surfaceexpressions' in the dimensionless magnetic fieldWe cal-

ﬁf’ _Iong as thet_co?.cent:catmf)n ofﬂth% p_artt;]clttas f|s |°Y;’ thle eqL“'culateszlz(a) and some of thé  ,(a). Lower orders van-
ibrium magnetization of a ferrofluid, is that of an ideal para- ;g except for the Langevin functidny o a).

magnetic gas. In highlly cgng:entrated ferrofluids on the qther In the polydisperse case discussed here, the paramfgters
hand, the magnetization is influenced by effects of partlcle-e, and « are replaced by more generally defined quantities
particle interactions.

We studied these effects for ferrofluids that are described> € ande (cf. Sec. ll). The calculated.r, , transform into
by a system of identical dipolar hard spheres in Hél, onefolq, MOfOld, or threefold sums over aII_part|cIes, where
hereafter referred to as paper I. In that paper, we used tﬁge_lndmdual add.ends are analytlpal functlons_of the mag-
technique of the Born-Mayer or cluster expansion techniqu&€tic moments, diameters of the involved particles, and of
to evaluate the equilibrium magnetization as a series exparihe reduced magnetic field.
sion in terms of the volume fractiop=N=D3/6V and a The paper is organized as follows. In Sec. II, we explain
dipolar coupling parameter=m?/47uok T, with N/V being  the principles of the cluster expansion technique. The main
the particle density, an® and m being the common hard part of the paper is Sec. lll, where we generalize the results
sphere diameter and magnetic moment of the particles, re&f paper | for the equilibrium magnetization in the monodis-
spectively. perse case to polydisperse ferrofluids. The findings are dis-
However, real ferrofluids are polydisperse, i.e., the par.CUSSGd in Sec. IV using sample distributions. In Sec. V, the
ticles vary in size and magnetic moment. This property has g_;esults are compared to the experimental data. We conclude
strong influence on the equilibrium magnetization, for con-in Sec. VI.
centrated as well as for dilute fluids. The goal of this paper is
to generalize the findings of paper | to include the effects of  II. CLUSTER EXPANSION: APPLICATION TO THE
polydispersity. SYSTEM OF DIPOLAR HARD SPHERES
The linear response problem of determining the static ini- . . o
tial susceptibilityy of a mixture of dipolar hard spheres was Here, we recapltulate_ briefly the F’””C'p'¢ of the Born-
investigated already for the equivalent electric case in thd/12Yer or cluster expansion technique: Consider a system of
framework of integral theories: The mean spherical modeParticlesi=1,... N interacting with an external potential
[3] was extended to binary or multicomponent mixtures i @nd with each other via a potentid); . To calculate ther-
[4—9]. The reference hypernetted chain metfibd| was also mod.ynam|c.propert|e§ of the system one has to find the ca-
applied to bidisperse systenjg1,17. Recently[13], the nonical partition function
mean spherical model was used within the algebraic pertur-
bation theory[14], however, without leading to new results z:f exp{ _2 vk—E vij
for the initial susceptibility. The mean spherical model was k i<
also extended to polydisperse ferrofluids in arbitrary high ] ]
fields[15,16). Another theory dealing with arbitrary fields is Here, vi=Vi/kT, v;;=V;;/kT, anddI" means integration
the high temperature approximatigh7]. A variant of this ~ OVer the configuration space. The kinetic energy of the par-
theory was proposed in RefL8] and extended in Ref19]. ticles, if important, can be thought to be included in the
Our calculation follows closely that of paper I. Therein termsV;. One now writes
the application of the cluster expansion technique to a mono-
djsperse system of djpo!ar hard spheres resu_lted in an expres- Z:f H e—ukH (1+f;)dr, 2.2
sion for the magnetizatioM that can be put into the form k i<]

sat 1S the saturation magnetization of the fluid. The

dr. (2.7
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where fi=e i el —1=fO+fD+fP4.... (2.9
fij=e_”ij—1. (23) W|th

If the typical interaction energy is small comparedib the f.(_o):eivil?c_ 1 2.9

fi; can be considered as small parameters for the expansion 1 ' '

of the integrand in Eq.2.2). The leading terms factorize into DD\n

low-dimensional integrals that can be calculated at least nu- f(n)_(_vii ) efviH.C n=1 (2.10

merically. il b = '

In the system of dipolar hard spheré@ronodisperse or
polydispersg the interaction potentiaV;; consists of a The two expansions concerning thierms and;;° together
dipole-dipole(DD) interaction and a hard cor@lC) repul- translate in the monodisperse case into a double power ex-
sion part,V;; =V5D+Vi‘]—|c, where the first part is given by pansion oZ in the the volume fractios of the particles and
the dipolar coupling constart We calculated the terms in
3(m;-Ty;) (M- Ty;) —m;-m, O(¢€") and inO(p%€?) of Z and from that the equilibrium
— (2.4 magnetization in the same order.

VPP =
j 3
Aol
I1l. CALCULATING THE EQUILIBRIUM

for two particles with magnetic moments; and m; at a MAGNETIZATION

distancerj;=x;—x; , with rj;=|r;;]| andFij:rij Iri; . For par- .

ticles with diametersD; and D;, one hasV“(r;;)=c if A. Notation

rij<Dj;=(D;+D))/2, andVHC(rij)=0 otherwise. Consider a system dfl spherical hard particles with di-
Taking the thermodynamic limit in a system of dipolar ameterd, ... ,Dy carrying permanent magnetic moments

particles requires some care because of the long range chaiy,, ... ,my contained in a volumé/ and subjected to a

acter of the force$21]. We circumvented this problem by magnetic fieldH. LetD andm be some “typical” values for

decomposing the dipolar potentials into a short range and giameters and magnetic moments that are discussed further
long range part, and replacing the latter by an effective mea . —
field. Within this approach, a particle experiences the IocaFreIOW' We then define the parametgrelated to the volume

magnetic field action of the hard spheres and the dipolar coupling param-
etere as

M _
— _ 3 2
Hlocal_Hs+Hdip0Ie,near_H+§+Hdipole,near- — N=D m

(2.5 S Aok TD®

(3.9

It consists of the dipolar near field gipoienear that is pro-  The equilibrium magnetization is calculated as a power ex-
duced by the other particles within a sphere of radRysind  pansion in these two parameters. The dimensionless mag-

of an effective “external” field netic fields are defined as
HomH 2.6 AR 3.2
s= 3 (2.6) A= 1T AT T (3.2

seen by the particle in question at the center of the spher&®iameters and magnetic moments will be expressed in units
Here,H is the macroscopic internal magnetic field aadhe  of the typical values via

sought after equilibrium magnetization. Thus, when evaluat-
ing the partition function one has to take D; m
Aizgy mi==. (3.3
Vi=—m;-Hg (2.7 m

. . We will also use the minimal possible distance between two
as the external potential. The radiRg of the sphere has to : oo
. : ; hard spheres andj given by
be taken to be sufficiently large to allow the far-field dipolar
contributions to be replaced by those of a continuum—cf.
. ; S . 1 Di;
paper | for details. Neither the kinetic energy of the magnetic Aj=5(A+A)=—=". (3.9
particles, nor the carrier fluid has to be taken into account in 2 D
the partition function, since these terms do not contribute to ) o
the equilibrium magnetization. The configuration space ig-urthermore, we introduce the reduced magnetic fields for
thus given by the positions of all particles and the orien- €ach particlé by
tations(); of their magnetic momentsil’ =d"x,d"(}; .
In paper |, we used in addition also an expansion in the a:miH —a w :miHs: o (3.5
dipolar interaction: Thd terms were expanded as S B S ’

051403-2



MAGNETIZATION OF CONCENTRATED POLYDISPERS. .. PHYSICAL REVIEW E 67, 051403 (2003

Our cluster expansion does not depend on how the chasystem of dipolar particles in a magnetic field in arbitrary

acteristic values oD and m are defined in detail. For ex- order ofe, it still is correct in the orders we want to calcu-
ample, they could be taken as some weighted mean dbthe late.
andm;, respectively, or their most probable values. To pre- The polydisperse generalization affects the calculation of
serve this freedom of choice in our expansion offers som¢he integrals in Eq(3.9) in the following two ways.
advantages for the comparison with magnetogranulometric (i) The fact that the individual dimensionless magnetic
analyses where the distribution of the diameters and madields «; are different leads to more complicated expressions
netic moments is not knowa priori but on the contrary the for some resulting functions compared to the monodisperse
goal of the calculations. case—see the definitions & andK"” below.

Note, however, thaty coincides with the actual volume (i) The dispersion in the hard sphere diameters requires

fraction ¢ of the hard spheres only if one definBsvia the =~ More difficult geometrical considerations concerningdﬁg
mean volume of the particles terms, especially in the three-particle integral.

— 1 3 B. The leading term: Polydisperse Weiss model
D3== > D; =f D3P(D)dD=(D%,. (3.6 _ . - _
N 5 The leading term itz is the partition function of théfor-

mally) noninteracting paramagnetic gas in the magnetic field
Here, P(D) is the normalized distribution function of the H,
hard sphere diameters.

Similarly m is related to the saturation magnetizatidi,, Zozf IT e var=[]I z, (3.10
of the ferrofluid viaM ¢,=Nm/ oV only if m is defined by k k

Ezéz mi=J m(D)P(D)dD. 3.7 Zﬁf e "kdx dQy=4m

VSinhask.

(3.11

Qs

The second equality of E43.7) holds when the magnetiza- The equilibrium magnetizatioM («s) obtained from
tion of each particle is given by a function of its volume. We —
assume that this is the case and thus describe in this paper \; =) _ _ 1 oF 1 4KkTInZ) m dinz
polydispersity effects of the ferrofluid by a distribution func- s MoV dHg  uoV  dHg MoV dag
tion P(D) depending only on the hard sphere diamdder (3.12
The generalization to a distribution functié?®(D,m) of in-
dependently varying diameters and moments is straightforreads in leading order
ward. Averages weighted with the distribution functi®(D) N

X i ; . - m -
of the diameters will mostly appear in thE reduced version as M (arg) = mﬁpoly( ). (3.13

integrals over the reduced diametes D/D with the appro-
priate weight functiorP(A).

The thermodynamic mean with respect to the noninteracttere,
ing system will be denoted b{ - - }q and the corresponding 1
canonical partition function by,. With this notation inte- )= — 4 .
grals over thef terms appearing iZ (2.2) can be written in Lranl @) =g 2. ik pas)
the form

= f p(A)L[u(d)ag]P(A)dA  (3.14
f [T e vkt cdD=2Zg(f-- ). (3.9
K is given by the sum of the Langevin paramagnetic contribu-

. . .. tions coming from eachlreduced magnetic momentu;
But in contrast to paper |, we derive here an approximation — . . .
directly for the free energyf=—kTInZ. If the particle- =m;/m with £ being the Langevin function. The second

particle interaction would depend only on the interparticleequallty in Eq.(3.19 is the continuous analog of the sum

distance therF would be given by with x(A)=m(A)/m and A=D/D. If one definesm via
Nm=X;m;, so that Nm/uoV=Mgy then Lyg(as— )
1<, 1w, =1.
F=Fo—kT 2 > (fijot 6 > (FijFifuido The result(3.13 reduces to the well-known expression

(3.9  for the magnetization of a polydisperse ideal paramagnetic
gas as a superposition of Langevin functions, if one replaces
including orders up t®(¢?), or, more generally speaking, as by « (see, e.g., Ref16]). However, the dipolar far-field
up to terms of second order in the number density. Thecontributions enter via Eq2.6) as a mean field into
primed sums are taken over all particle pair§, respec- L
tively all triplesi, j, k. While Eq.(3.9) does not hold for a as=a+mM/3KT. (3.15
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Thus, the lowest-order resul8.13 for M(E) ,

mM

Nm
Ot 3T/

= MOV['poly

M (3.16

already contains corrections from the particle-particle inter-

action in the mean field approximation and E8.16) is the
polydisperse generalization of the Weiss mo@dl].

By replacingM on the right hand side of E¢3.16) by the
expression for the ideal paramagnetic gas, one arrives at t
equation proposed in Rdf18].

C. The magnetization inO(¢)

To calculate the canonical partition function in linear or-
der of ¢», we follow the lines of paper I, Sec. IV. One needs
to include only the linearf terms in the expansiof3.9).
Thus, we write

1o
F=Fo—kT§2 (fij)o- (3.179

For the second term in E43.17), the trivial integrations
over the degrees of freedom of all particles exdegnd]j are
performed first. This gives

LRNY ANV -
52 <fij>0=2—202 f]‘k[ e kf;dl

1
22z,

_3

e_vi_vjfijdxideinde .

(3.18
Now we expand;; . Let
An,ij:f e_vi_vjfi(jn)dxideinde. (319)
such that
, kT &
F=F0—Z Flj nZO Anjj - (3.20

We need not calculatd,, since this term does not con-
tribute to the equilibrium magnetization. Furthermo#e,

=0, because a dipolar magnetic field vanishes when aver-

PHYSICAL REVIEW E67, 051403 (2003

Here, we have integrated owgrand decomposed; into the
distancer;; and a spherical angle;; . The angles ¢; , ),
(¢j,9;), and (¢,9) represent the spherical angl@s, (1;,
and w;; , respectively. The function

P, 9315, 9@, 9)=3(My - Fij) (M- Fij) —my-my
(3.22

comes from the dipolar interaction. The integration over the
jrections ofr;;, m;, andm; can still be done analytically.
ut in contrast to the monodisperse calculation, the result is
now a function of two parameters;; and as;. We define

V2
n!(n_l)’JTZiZj
X P, 97, 01,9),¢,9)d0QdQdowj; .

(3.23

Gr'?(asi , @) IS symmetric in its two arguments and a poly-
disperse counterpart to the functi@y(«s) defined in paper
I It is GP(ag,as) =G, (as). Some of theG” are given in
the Appendix.

Inserting Eq.(3.23 into Eq. (3.2)), integrating over;
between the minimal distand®; ande, and introducings
and e yields

GE( g va’sj) — X f @%siCoSV; + asjcos v

2 N —_
An:NZiZj ¢6n(Miﬂj)nAi3j Gy ag), (3.24

and together with Eq3.20 the free energy

kT @@ — .
F=Fot =g 2 2 (pip)"A] "Gll(asi ag)).
(3.29

Here the dots represent the contribution frégthat was not
calculated. It can easily be shown thatioes not depend on

a particular definition ofn or D. B
Now, the equilibrium magnetizatioM («s) is given in
O(4) by
— Nm S
M(as) = m £poly(as)+r]§=:2 ¢6nGpon,n(as)]
(3.2

aged over a spherical surface. This is explained in more de-

(n)

tail in paper 1. Using the definitiori2.10 of f;”, and the

dipolar potential(2.4), we can write

An:X easicosﬂi+asjcosﬂj
n!
muim; |
—IJ3 Pn((pivﬁi!(Pjaﬂjv(P!ﬂ)
47T,LLOkTrij

The functionG! is the derivative of

poly,n

- 1 ! nA3-3n~P
Gpoly,n(as):mz (ﬂiMj) Aij Gn(asivasj)
=f [(A) p(ADTAT"

X GF(asi,as)P(A)P(A))dAdA;,
(3.2
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which is a generalization db,, [2] and reduces to the latter 36 L
in the monodisperse cag =D =D andm;=m=m. (PR 0= W(/’Liﬂj)z(ﬁzezeg(a'si )

In a last step, we convert the expressionNbias a func- ™
tion of «g into a function ofa using the definition oHg in 4 _ HC

: Harating i : X | rifevi £ Qfdr dr;

Eq. (2.6). By expanding and iterating in a way that is analo- ij ik ke G ik
gous to the procedure in paper l, Sec. IV C, we obtain the
final result forM up to the order ofp:

(3.3

The integral over;, can be described by the following geo-
metrical considerations: The volume of possible positions of
particlek has to be found such that this particle overlaps with
both particles (i.e., rix<Djy) andj (rj<Djy). Otherwise
the integral would vanish because of the fadi@if (Y. This
' (3.28 is only possible, ifrj; <D+ Djy.

In a final step the integration ovey; betweenD;; and
The two leading terms can be seen as the polydisperse eRik Djx is carried out. The final result is

tension of the high temperature approximation derived in
Ref.[17] for monodisperse systems.

m - — —
ﬁpoly( a)+8 ¢5£poly( a)l ;;oly( @)

M —_—
(@="y

+ nzz peéoly,n(g)

3 .
<fi(j2)fi(lg)fj(g)>ozm(ﬂiﬂj)zﬁbzeze‘ﬁ(a’si ) Asj)
D. The contribution in O(2€?)

For the monodisperse system, the magnetization contribu-

tion in O($?€?) was calculated in Sec. V and Appendix B of The functionfG(Aij »Aik,Aj) is given in the Appendix. The
paper I. The cluster integrals needed in that order are showontribution to the free energy is according to E@9) and
in Fig. 3 of paper I. Some of them vanish for the same reasog.29 given by

as the contributior\; in O(€); they involve the averaging
of a dipolar field over a spherical surface. Most of the re- 1, (2)£(0)¢(0)
maining integrals cancel when the free enerfi~= —kTg 2 3(H i i Do
—KkTInZ is calculated. Up taD(e?), we can write the re- 1+61n2
o . — n2. —
maining term in Eq(3.9) as _ —NkT¢262—Gpo|y,2( a). (3.33

B 4
(fijficf o= (AP TR0+ S(FPHITR)o
+3<fi(jl)fi(d-)fj(g)>0_ (3.29 The function

XFC(A, A Ajy)- (3.32

; ~ — 6 1 ,
These three tgrms colrrespoltzj_go the graphs, andH in G oA @e) = Treins X— E (#iMJ)ZGE(asi as))
paper I. The first one is a@(¢“€”) term that does not con- N

tribute to the magnetization.

X FO(Aj A, A ), (3.39

1. Graph G
i i P i . was defined in such a way that it reduces@¢(«;) in the

_ Here, we give an outline of the polydisperse generalizayonodisperse case. Finally, introducing the diameter distri-
tion of the calculation pertaining to graggh (Appendix B.7  ption functionP(A) requires the replacement
of paper ). The quantityZs calculated in paper | is given by
the sum L
— ' _>f P(Aj)dA{P(A;)dA;P(A)dA (3.3H

1 " ($(2)£(0)£(0) N
ZG:ZOE 2 <fij fjk fii’)o (3.30
in Egs.(3.33 and (3.34).

over distinct particles,j,k. For calculating(f{?f{f(>),
one starts with the trivial integrations: the degrees of free- 2. Graph H

dom of all particles except, j, andk, the position of the The integrations to calculatd (" f(?), are performed
center of mass of the three remaining particles, and the orias follows(compare to Appendix B.8 in papex. After doing
entation ofm,, since particlek is not involved in dipolar the trivial integrations(concerning the possible configura-
interactions in this cluster. Then, for a fixed distamgethe  tions of the particles exceptj, andk, and the center of mass
integrations ovew;;, (), and(};, defined as in Sec. [l C of the clustey, the possible orientations of the cluster are
are carried out. This introduces the functi®j into the re-  integrated out. Then, the integrations over the orientations of
sult m;, m;, andm, are performed. One arrives at
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2

— 4
De(1)e(0) _ 2
<fi(j )fi(k)fj(k)>o—ﬂi Mj#kfz 15v2

Kp(asi 1 Agj , @sl)

56 C C
xf —(3 cogd—1)e Vi e Uik 7O
ijlik

(3.39

xdrj;drysindjdd;y .

PHYSICAL REVIEW E67, 051403 (2003

3. The magnetization contribution
Inserting Eqs(3.33 and(3.4)) in Eqg. (3.9 and calculat-
ing the equilibrium magnetization results in an additional
O(¢?€®) term in Eq.(3.26:

N m——,

4 1+6In2_,
€
HoV

4 Gp0|yv2(23)_K[’)oly(Zs)- (3.43

This is, up to a factor oN?Zy/2, a polydisperse generaliza- g expansion and iteration procedure to switch fregto

tion of Eq.(B21) of paper |. The remaining integrations con-

cern the distances; andr, and the angle}; betweerr;;
andr;, . The functionK® is defined by

P _3(4mV)°
(asira’sjva'sk)_S 22,2,

1 1 (1
Xf f f elasititasjuj+ agy)
-1J-1J-1

(3.3

[compare to Eq(B22) of paper |. An expression for the
monodisperse counterpd{ a) was given in Appendix A of
paper |. Here, we expre$§” via Langevin functions,

X (3+u?)ujududu;dug

KP( Asj, Agj s agi) = 3L( a’sj)ﬁ( as)[3+ L' (asi) + L( asi)z]-
(3.38

Note thatr;;>D;; andry>Dj is required, otherwise the

integral (3.36) vanishes. The requirement that partiglesd
k have to overlap imposes the additional restricti¢n§
_rik|<Djk and

2 2 2
ri' -H'ik— D‘k
V< = arccost— ——.

3.3
2rijrik (339

«a is identical to the monodisperse case in paper I. The full
expression for the magnetization containing all calculated
terms reads

Nm
M=——

o | £rol @) +BELpa(@) Looy()

©

+ ngz GE"G oy n( @) +BAPZE Loy (@) Ly @)?

—— —n = _2_21+6In2~/ —
+32¢°€“ Loy @) £p0|y(a)+ € pow,z(a)

— 2K (@)

) (3.49

IV. SELECTED RESULTS FOR THE MAGNETIZATION

The Figs. 1 and 2 showing separate contributions to

M («) in polydisperse systems were obtained by using log-
normal distributions

P(D) e azlze—lnz(D/Do)/(Zaz)’ (4.1)

1
- \/%O'DO

After performing the remaining integrations within these o the particle diameters as a representative and often used

limits, the result is

. 48
(fi(jl)fi(&)fj(g)%:MiZMj,U«k¢2€2—2
5N
XKP(as ) g !ask)fK(Aij A Aj) -
(3.40
The functioan(Aij Ajic,Aj) is given in the Appendix. The
contribution to the free energy is
s (D(1)£(0) 72 -
_kTg 2 3<fij fjk fii >0:NkT¢ € Kpoly(as)-
(3.41
with
— 24 1 ,
Kpoly(as): 5 @ 2 :“izﬂj,uk
X KP( e ) g aa'sk)fK(Aij A Aj) -
(3.42

example for size distibutions of model polydisperse systems.
Using similar distributions, e.gl’ distributions, however,
would not qualitatively modify the results. In Sec. V, we use
also an experimentally determined size distribution. Here,
the quantityD was taken to be defined via the mean volume
(3.6, i.e., D=(D3p=D3e!"2 s0 that¢ is the volume
fraction ¢. The magnetic moments of the particles were
taken to scale with their volumesy~D?2, allowing to set
w(A)=A3 such thatm=(m)p.

Figures 1 and 2 show the contributions

L1 1( @) =8 Loy @) Lig @), (4.29

Lo o @) = B4L o @) Lo @)+ 32L oy () 2L ()
1+6In2.

+ = Gpay A @)~ Kpgy( ), (4.2h
LiAa)=Gloyda), (4.20
L1d@)=Gpoy @) (4.29
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15— : ; ; . 0.15 ; .

FIG. 1. The contributions ;; and L, as functions ofa for FIG. 2. The contributiond.; , and L, 3 as a function of« for
lognormal distributions with different widths. Here, (A% =1 lognormal distributions with different widthe. A and x(A) as in
andu(A)=A3, Fig. 1.

to M(«) (3.44 for different values of the widtlr of the  function of «. Here, each particle has a total magnetic inac-
distribution (4.1). The contributions of higher-order terms tive layer of 2.8 nm and the diametePs, 4 of the magnetic
increase with growingr. This is so because they depend oncores are log-normally distributed withr=0.25 and
higher moments of the distributioR(A) that grow with the (D} 1£°=10 nm. The latter is taken as the reference diam-

\Iivé%tthfigg(t:ih?I'r?:tsr;]ti)fltjté?r;heevrﬁg;ifél;eo:‘htlr:g R?TeifﬁsiﬁéiighteterD in the calculation. The particle density is chosen in
has a similar reason: Bigger particles, that react to smallefuch @ way thaip=0.05. Note that heréh= ¢pag, the vol-
fields become more and more important when the width obme fraction of the magnetically active material. The mag-
the distribution grows.

The assumption(A) = A3 that the magnetic moments in
our ferrofluid model scale-D? with the total volume of its
hard sphere constituents is somewhat too simple for particle:
in real ferrofluids for two reasons. First, in the common case
of steric stabilization by polymers, surfactants providing the
repulsion the surfactant layer of about 1-3 nm do not con- ¢g |
tribute to the magnetic moment. Second, an outer layer of the
magnetic material might be magnetically dead so that it doe
not contribute to the magnetic moment either. For magnetite o4

1

0.8

particles a dead layer depth f0.8 nm has been reported ,{,/", ’ T o eeeree with moraction "

[22]. To account for the sum of these two effects, we have /// ——- polydisperse, without interaction

introduced in our calculation foM an effective magnetic ozt [/ polydisporse, with Interacton
diameterD 54 Via the relatiorD =D 54+ 5.6 nm. It ascribes

to every particle that has a magnetically effective core of . .

diameterD 54, @ hard sphere with a magnetically inert layer % 2 _ 4 6

of depth 2.8 nm. The magnetic moment of each particle was “

then taken to scale with is magnetically effective volume, k|G, 3. Equilibrium magnetization of a polydisperse ferrofluid
i.e., u=(Dmag/D)>. [(D3.9#3=10 nm, 0=0.25, u=(Dnae/D)®] and a comparable

The full line in Fig. 3 shows the reduced equilibrium monodisperse ferrofluid, both with and without taking into account
magnetization of an interacting polydisperse ferrofluid as ahe particle interaction. See text for further details.
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netic momentm for D,=10 nm is chosen such that ' ' ' '
=2. The magnetization of the core is then about 550 KA/m o8 | °~ 02 aned
at room temperature, which is a little bit larger than that of /-—;;‘::;”’
magnetite. ;06 F o 1

Expansion terms of the order @fe" are taken into ac- =2 P
count up to orden=5 for the magnetization curves in Fig. 0.4 r // i
3. Higher O(¢e€") terms have only a s_maII e_ffect on the 02 | // i
magnetization. Heres is by definition ofm andD a typical 4
interaction energy divided biyT for particles at a distance of 0 ' : ' : - : ' :
D =10 nm. But with the two additional dead layers of total =03 ~
size 5.6 nm in between the particles of our model ferrofluid 98 ommmmEREEEEET
the real typical dipolar energies at contact are smaller. L=EEEE

The magnetization is compared to that of a polydisperse 3 0.6 1 /,/’Z// i
fluid without particle-particle interactioflong dashed ling g el

: : . . 04l - _
and to a monodisperse ferrofluid, both with and without tak- 7
ing into account the particle-particle interactiofshort 02 L /4 |
dashed and dotted line, respectivyelfhe monodisperse sys- 4
. . ) . y

tem consists of particles witD ,,,i=10 nm with the same 0 , , , ,
nonmagnetic layer thickness, bulk magnetization, g,
as before. 0.8

One sees that taking into account polydispersity or par-
ticle interaction alone strengthens the magnetization and es _ 0.6
pecially the initial susceptibility. Both effects are comparable g”
for the given parameters. Together, they result in an ever= 0.4
higher equilibrium magnetization.

Figure 4 shows magnetization curves for magnetite-basec 0.2
ferrofluids with a bulk magnetization of 480 kA/m for distri-
butions of different widthsD .54 is taken to be lognormally 0
distributed with(D3.)p=(8 nm)* ando=0.2, 0.3, and 0.4. &

The volume fraction of the magnetic materialdg,,4=0.1.

The particles are again assumed to carry a nonmagnetic layer FIG. 4. Equilibrium magnetization as a function affor log-
of 2.8 nm thickness. normal distributions with(D3,,)&°=8 nm and different widths.

tibility already in the noninteracting cagleng dashed lings  tion only in O(¢e); solid lines: all calculated terms.

Including theO(¢e€) terms(short dashed lingshas a posi- to n=>5 to the data assuming log-normally distribuBghs,

tive effect on the magnetization. The relative increase is .
g and a nonmagnetic layer of depth 2.8 nm. The bulk magne-

maximal for smalla. The magnetization decreases again atjation of magnetite was taken to be 480 kA/m. The result is
higher «, if higher-order terms are taken into accofsolid  shown in Fig. 5. According to the fit, the saturation magne-
lines). For the considered ferrofluids th@($%€?) term that tization of the ferrofluid isVl ;= 37.4 KA/m. The parameters

is negative for higher (see Fig. 1is almost solely respon- defining the distribution turn out to bB=8.3 nm ando

sible for this decrease. The positive contributions from the=0.28. There are small differences between the data and the

: ~n : - fit curve that are, in our opinion, due to deviations of the real
higherO(¢€") terms (1=2) are again negligible, except for ' S ’ . :
9 (¢€") — 0=2) 9 919 P diameter distribution curve from the idealized log-normal

o=0.4 and smalky, where they cause a further increase Ofform

the initial susceptibility. For smaki the O(¢?¢”) term also Embs[23] measured the equilibrium magnetization curve
has a positive effect, but this effect is too small to be visible of the ferrofluid APG 933 of FerroTec. In addition, he deter-
The plots show again that the influence of higher-order termgnined the diameter distribution of the particles by transmis-
is larger for broad distributions. sion electron microscopyTEM) that was then used in our
theoretical analysis. Diameters found in TEM measurements
are those of the magnetite particles. We assumed the mag-
netically effective diameterd ,,4to be 2<0.8 nm=1.6 nm

We compared our theorerical predictions for the magnetismaller and to be zero for particles smaller than 1.6 nm. The
zation curves with experimental results of two differenthard core diameter® were taken to be 2 nm=4 nm
magnetite-based ferrofluids. OdenbathARM, Bremen larger than the diameters obtained from the TEM measure-
provided data on the equilibrium magnetization of the ferro-ments. As above, we took into account terms u{ape®)
fluid EMC 905 produced by FerroTec. We fitted our theoret-and set the bulk magnetization of magnetite to 480 kA/m.
ical result(3.44) taking into account the terms @(¢€") up  Figure 6 shows the TEM data and the experimental magne-

V. COMPARISON TO EXPERIMENTS
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40 - - - ' tization curve together with the results of our theory. Both
agree very well.

30 VI. CONCLUSION

In this paper, we used the technique of cluster expansion
to derive an approximation to the equilibrium magnetization
for the system of dipolar hard spheres in a magnetic field
with diameter and/or magnetic moment dispersion as a
model system for a polydisperse ferrofluid. The calculation
results in an expression for the magnetizatidin form of a

twofold series expansion in the parametgrsclosely related

to the volume fractionp, ande, a coupling parameter mea-
suring the strength of the dipolar interaction:

10

0 100 200 300 400
H (kA/m)

2= 2 P ma(a). (6.

<‘3|

FIG. 5. Equilibrium magnetization of the ferrofluid EMC 905. ¢, €, and the dimensionless magnetic fieldare defined for
Dots: experimental; solid line: the theoretical magnetization curvesome typical value® andm for the hard sphere diameters
assuming lognormally distributelt s, cf. text. and magnetic moments, respecuvemy can be chosen in

such a way that the prefactdinv .V reduces to the satu-

ration magnetization of the system. We gave expressions for
20 . . : Lin (n=<5) andL,,. Lower-orders vanish, except fdr, o
reducing to the Langevin function in the monodisperse case.
The calculated. ,, , can be written as multiple sums over all
particles whose addends are analytical expressions.

The influence of particle-particle interaction grows with
increasing width of the considered diameter distribution.
Taking into account only the ; term results in an increase
of the magnetization relative to the non interacting system,
whereas the , , term leads again to somewhat smaller val-
ues at highera. Only at very smalla is its contribution
positive. Thel,, terms have little effect for realistic,

0 : : : magnetite-based ferrofluids, except for broad distributions,
0 500 1000 1500 where they increase the initial magnetization.
HIKA/m]
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E 400 1 APPENDIX: THE FUNCTIONS G, €, K
c
200 L i The functionsG,ﬁ’(xl,xz) are symmetric in their argu-
HH_HHHH ments and have the form
0 ’_I_I_mﬂmn_ﬂﬂﬂﬂmrh—.ﬁ !
10

D[m] G (x1,%2) = GEO(Lixy, 1x,) + coth(x,) GE M (Lixy, 1ix,)

+coth(x,) GF M (1/x,,1/;)
FIG. 6. Top: equilibrium magnetization of the ferrofluid APG

P(2
933. Dots: experiment; solid line: the theoretical magnetization +cothix;) coth(xz) GFP(1xy, 1hxp). (A1)
curve. Bottom: diameter distribution according to TEM measure-
ments. The G} are polynomials and read for<5
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When all diameters are equal, these functions reduce to

G _1
1o(A,4,4)=5+In2, (A8)

(A9)
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